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1. Summary 
This report details the development and evaluation of a flight controller system with digital 
hardware acceleration to improve performance and simplify software. 
First the report will introduce the problems with existing flight controller designs, followed by 
how the use of a Field Programmable Gate Array can improve the situation. Finally it will 
detail the issues obstructing an FPGA implementation. 
As the first step in the design, a literature review is conducted to establish how others have 
implemented similar systems. Once this information is distilled, the development 
methodology is established. Including the tools and workflow necessary for each design 
component (or module).  
After this, an overview of the system architecture will be shown, with an explanation of the 
function of each module and how the design was altered during testing. The design process 
and results will be discussed with a critical evaluation of the method and its outcomes. 
Subsequently, a performance evaluation will be conducted on the new system. Which will 
establish the success of the design from a performance perspective. 
Finally, the report will conclude with some recommendations for future work. 

2. Introduction 
Typically, a flight controller is defined as a system, usually electronic, that assists or allows 
an airborne vehicle to control its position and attitude while in flight.  
In the particular field of multirotor UAVs, a flight controller is required to maintain stability. 
Pilot inputs are simply used to modify the goal state that the stability system aims for. For 
example, the pilot might request a desired attitude or speed through the transmitter. Like 
some modern aircraft, these multirotors are unflyable without the assistance of a computer 
[1]. 
 
For research applications, these flight controllers require a combination of performance, 
flexibility and simplicity. And should allow the easy implementation of new airframe 
configurations, control system software or sensor inputs. While having enough spare 
performance to cope with the extra workload. In flight controller terms “performance” is 
usually defined as the stability of the aircraft in regards to its goal state. For example, how 
much does a particular disturbance affect the aircrafts state? A more performant system will 
return to the desired state more quickly and accurately.  
The performance of a system is affected by how quickly it can feed sensor inputs into its 
internal model and produce a response. As well as how accurately the internal model 
responds. The delay between data being fed in and acted upon is a measurable 
performance metric and will be the focus of this report. 
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2.1 Gap Analysis 
There are a few reasons why conventional approaches to flight controller design have 
fundamentally compromised performance. 
The conventional approach to multirotor flight controller hardware is through the use of an 
SOC, or system on chip. Which implements a large sequential computer in a single small 
package. The hardware at work in these complex systems are usually powerful 
microcontrollers, like the current ARM Cortex series [2].  
The multifaceted task of managing sensor, commands, stability and output operations can 
be challenging for a single processor. Especially with some of the intensive mathematical 
operations involved in maintaining stability, such as numerical integration and kalman 
filtering [3]. When the processor does not have sufficient resources it will cause the system 
latency to increase, and hence overall flight controller performance to decrease. 
 
In addition, RMIT requires an accessible platform for multirotor research projects. The 
management of the intensive tasks discussed above can lead flight controller designers to 
large, complex and slow flight control software. Which has to balance numerous real time 
tasks with multiple priorities. Typically this complex software can become an obstacle when 
repurposing the system. Increasing development time.  
 
But other flight controller hardware options exist that can ease this complexity while also 
relieving associated performance issues, this project shall be exploring one in particular. 

2.2 FPGAs as the Solution 
Field Programmable Gate Arrays, or FPGAs, consist of many discrete digital logic devices, 
such as gates, memory and look up tables. This hardware can be interconnected through 
software, to create more complex digital systems, such as a conventional processor. The 
flexibility of this system allows the creation of very specific and optimised hardware for niche 
applications. 
Hence FPGAs can act somewhat like an Application Specific Integrated Circuit, or ASIC. 
Except without the large costs associated with ASIC development and tooling.  
Below can be seen an FPGA schematic, consisting of (among other things) many thousands 
of discrete logic components. 
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FPGA Diagram - Intel, “MAX 10 FPGA Device Architecture,” p. 31. [4] 

 
FPGAs allow industries and applications that might otherwise not have the resources for 
ASIC development to access the performance of custom silicon. However the performance 
when compared to ASICs will always be comparatively worse, as FPGAs incur a 
performance handicap for their complex internals and subsequent flexibility. 
  
In respect to UAV flight controllers, this facilitates moving some of its tasks into hardware 
modules within the FPGA. Which has the potential to: 

● Improve latency and update frequency 
● Reduce the size and complexity of the codebase 
● Make it easier for new features to be added to existing hardware 

 
FPGAs do have limitations on the amount of digital logic that can be implemented on one 
unit. The usage of the internal resources shall be referred to as resource usage for the 
context of this report. The resource usage of an FPGA is greatly affected by the type of the 
logic implemented, so methods for precalculating the resource usage of a design are not 
used. 

2.3 Problem Statement 
Naturally an FPGA implementation comes with its own set of problems, this report aims to 
address each of them, and produce a working example to demonstrate the designs 
effectiveness. 
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2.3.1 Design 
However, many of the design decisions surrounding an FPGA flight controller 
implementation are not straightforward, as the sheer flexibility of the hardware can 
overwhelm any attempts to pin down system details.  
Many architecture decisions are needed to lay out interfaces and system boundaries, which 
will allow the work to be divided into individually manageable portions.  
Much of this design will be drawn from historical analysis, identified in the Literature Review 
(to follow). The final design will be discussed in the Development Results section. 

2.3.2 Construction 
Furthermore, the creation and testing of FPGA “programs” requires specialist knowledge and 
experience with a suite of software tools unique to the platform. In order to complete the 
design implementation, a Development Methodology will be constructed detailing the tools 
and processes necessary to implement the design. 
Testing and debugging of FPGA projects requires further work and a thorough process in 
order to combat the oftentimes obstructive tools.  

2.3.3 Results 
In order to draw conclusions from the project, a quantifiable performance metric and metric 
measuring system must be established, this will be discussed in the Performance Evaluation 
section. 

3. Literature Review 
Research papers provide few examples of FPGA flight controller implementations. However, 
from the few that do exist, important information can be extracted about how others have 
utilised the FPGAs flexibility.  
Each of the following sections lists a design factor, and each historical examples approach 
will be subdivided by their approach to this design factor. 

3.1 Overall Architecture Types 
Of particular interest to this report is exactly what tasks the FPGA fulfils within these flight 
control systems. As such an innately flexible piece of hardware, analysing historical 
configurations may help to understand the design space, as well as the compromises and 
tradeoffs made in each design. The following sections each describe a different architecture 
type that was seen in previous implementations of FPGA flight controllers. 

3.1.1 Hardware Sensor Processing Only 
The only common feature between each of the five implementations is that they utilise the 
FPGA for processing the input data from sensors. In one extreme instance [5], the FPGA 
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was only used for processing inputs, and flight control was done on a seperate 
microcontroller connected to the FPGA via serial connection. 
This makes it clear that the parallel nature of FPGAs is suited toward the independent 
collection of disparate data from sensor sources. Which “lets the CPU concentrate on 
controlling the aircraft” [6], as some data collection tasks can be expensive and interrupt the 
CPU during real time calculations. 

3.1.2 Entirely Hardware Implementation 
Implementations [7] and [8] take FPGA utilisation to the other end of the spectrum, and have 
no external CPU or softcore at all. Stabilisation is performed using closed loop control 
embedded directly in the FPGA. 
Unfortunately, neither paper focuses on the performance of such an approach, and both 
stabilisation methods are extremely basic by modern standards. Furthermore, neither 
hardware actually flew, with [8] confined to a simulation and [7] only demonstrated on a test 
stand.  
While this design choice might offer theoretically minimal latency, it appears that 
implementation of a complex modern control system inside the FPGA fabric may not have 
been worth the performance improvements. Furthermore, the decrease in flexibility for what 
is intended to be easy to modify system makes this sort of design more unappealing. 

3.1.3 Accelerated Stability Calculation 
In paper [6], a middle ground between the stability coprocessor of [5] and stability hardware 
modules of [7] and [8] is taken. 
In this approach a softcore CPU offloads input, output, and select intensive stability 
calculation tasks to FPGA hardware modules. While the control loop is still run sequentially, 
it allows (for this implementation) a minimum of only 11 CPU instructions to be run each 
loop. Despite the potential performance improvements, the paper still touts that “the design 
is easily expanded using hardware modules or by modifying the control software”[6].  
 
This architecture type is selected for further consideration. 

3.1.4 Accelerated Cascaded Speed Control 
One area where improvement in control latency has been suggested to have a significant 
impact is the translation of propeller speed to motor throttle. 
This proposal stands out in practicality because the relationship between propeller speed 
and thrust is almost linear for conventional flight [9]. This means the system can be modelled 
accurately with simple PID control.  
Systems that control the motor throttle in a separate control system to the attitude, known as 
“cascaded motor speed control and attitude control” systems, have already been shown to 
improve hovering stability [10]. 
With a simple implementation that can be generalised among many different multirotor 
configurations, a cascaded speed control is an effective way to leverage the abilities of 
FPGA hardware with minimal development resources. 
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But it creates issues regarding ease of configuration in the event that the control constants 
(ie PID gains) of the system change. 

3.2 IO Interface Design 
Another area of interest is the interface between hardware IO, such as sensors, and 
sequential processor modules (if any). 
The possible designs for this bus are numerous and the advantages and disadvantages of 
each are not immediately apparent. RMIT also wishes to avoid interrupt driven systems due 
to the added complexity. 
 
Few of the references go into much detail on this system, referring to it only as a “concurrent 
bus” [11]. Only implementation [6] has enough information to be of use. 
In this implementation, sensor data is accessed when the CPU receives an interrupt from the 
hardware informing it that new data is available. It is then occupied for 3 clock cycles as it 
transfers the data into local registers.  
This method has minimal CPU load when compared with conventional flight controllers, but 
could still potentially be made even less CPU intensive through direct memory access or 
similar. 
 
Unfortunately all the historical FPGA flight controller examples found described some form of 
interrupt driven IO mechanism. As such, caution must be used in the IO systems design. 

3.3 Sensor Initialisation 
One gap in the current research centers around identifying ways of dealing with the 
initialisation of peripherals.  
The problem of initialisation is identified in paper [7], where special modifications had to be 
made to the hardware controlling the ESC output to initialise at system start. The issue is 
created when hardware modules are used to manage IO, and one or more peripherals 
require configuration data to be sent in order to start operating. 
With more complex peripherals, creating hardware modules to configure the external 
devices would become significantly more complex. Additionally, given the sequential nature 
of serial communication, the parallel nature of FPGA programming does not lend itself well 
to this task. 
Furthermore, flight controller software designers would benefit from having control over each 
device configuration without having to reprogram the FPGAs hardware modules (a task 
requiring a large toolchain and specific knowledge). 
 
In order to minimise complexity while still maintaining performance. Hardware functions that 
allow the passing of peripheral control from CPU to hardware module will be investigated as 
a solution to all these problems. When the system starts, the CPU could configure and setup 
each peripheral sequentially, and then pass communication over to the hardware modules 
designed to communicate with that device. 
If the solution works as intended, it would increase the time taken for the system to start, but 
otherwise still maintain the FPGAs potential performance advantage. 
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4. Development 

4.1 Methodology 

4.1.1 Tools 
The FPGA product ecosystem was chosen based on what RMIT already had resources for. 
Consequently an Intel/Altera FPGA development board and associated Quartus software 
were selected as the testbed for the project. 

Testbench/Hardware 
Once the FPGA is programmed, testing with motors and other associated hardware is 
essential in order to debug and tune. The FPGA MAX10 development board connects to a 
USB JTAG adaptor that allows it to be accessed via the laptop. The board is powered over 
another USB connection and interfaces with hardware via a GPIO header. 
The oscilloscope can then be used to monitor signals into and out of the FPGA, ensuring 
they behave as expected. 
The electric motor is securely mounted with a vice and covered with a clear plastic container 
to limit exposure to spinning propellers. 
A UART serial adapter is used to receive data streams from the FPGA for logging and 
further analysis. 
 
Components 

● FPGA Development Board 
● USB Blaster 
● Oscilloscope 
● Multimeter 
● Motor + Mounting  
● ESC + Speed Sensor 
● Power Supply 
● UART Serial Adapter 
● IMU 
● Laptop 
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FPGA and Motor Testbench 

Software 
FPGAs “programs” are files that specify a configuration of the FPGAs digital logic 
components, ie a description of how the FPGA is configured for a particular application.  
These binary files are sent over to the development board via a JTAG adaptor, and are 
created through Intel/Alteras integrated development environment Quartus. 
 
Within Quartus the program is created in the hardware description language Verilog. Which 
can be compiled, or “synthesized” into an arrangement of the FPGAs digital components. 
Verilog is an interesting language due to its concurrency, any portion of the program can be 
in “execution” at any time. This can make it difficult for those familiar with sequential 
programming languages to formulate their ideas correctly. 
 
Quartus contains a library of premade digital components, anything from simple arithmetic 
units up to reasonably full featured CPUs. It can also generate different types of bus 
interfaces to connect these components automatically through a tool called Qsys. Many of 
the components and buses are proprietary, but the user can add custom components 
(perhaps designed through Verilog as above) to take advantage of Qsys for their particular 
application. 
 
Also included in the Quartus software is a simulation tool called Modelsim, which allows the 
designer to test Verilog programs locally. This tool is a key component of the workflow, as 
information about the FPGAs internal state can be difficult to obtain from the development 
board, but very easy through the simulator. 
The user may also find the need to create testbenches to automatically configure the Verilog 
module for simulation. As often the configuration of the modules input and outputs may differ 
if the module is running in a simulated environment, or among other modules in hardware. 
 
Quartus also comes with the toolchain for building applications to run on the premade CPU 
mentioned earlier. This CPU, the NIOS II, can be detected over the JTAG interface and 
flashed with a program via the Nios Software Build Tools. The SBT compiles the CPU code, 
creates the Operating System, programs the processor over JTAG and sets up a remote 
GDB instance for debugging the software in realtime. 
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The CPU code for this project was written in C++, an object oriented language that can 
make it difficult to interact with the hardware on the bit by bit level required, but allows the 
abstraction of more complex flight controller concepts and is reasonably approachable. 
 
In addition to memory interactions done through the CPU, Quartus can access certain 
hardware functions via a command line interface. This interface uses the TCL scripting 
language to automate JTAG interface functions, such as accessing mapped memory. 
Hardware modules in the FPGA that are connected to the built in Avalon Memory Mapped 
bus can be accessed via TCL functions as long as each register or memory location has 
been assigned an address. Management of the Avalon bus is done through Qsys 
(mentioned above). 
 
In this application, post processing of the raw register data was needed in order to aid in 
tuning some of the hardware modules. This script was written in TCL and will be discussed 
in more detail in the Development Results section. 
 
Microsoft excel was also used to graph and analyse motor speed data collected during 
experiments. 

4.1.2 Development Process 
Developing the architecture required research and planning to establish the design, and then 
further planning and research when the development inevitably ran into problems with 
integration. 
 
The development process starts with the design of the artitecture: 

● Literature review/historical analysis 
● System requirements developed 
● System architecture/diagram 

○ Deciding upon boundaries between system components 
● Component requirements 

○ Which other components need to be connected and in what way 
○ Debugging methods 

● Integration 
○ For some Quartus problems removing every component and adding them 

back in was required 
 
Once the system is designed. The development of the custom FPGA modules begins: 

● Module declaration written, declaring inputs and outputs along with their sizes 
● First implementation, correcting errors until it compiles without any severe warnings 
● Writing testbenches to automate simulation, initialising variables etc. 
● Simulation in Modelsim  

○ Can produce major issues that require a second pass 
● Hardware test,  

○ Using the oscilloscope and multimeter to gather more information about 
hardware outputs. 
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● Inevitably more simulation to further clarify the issues seen under hardware testing 
● Final pass to correct these issues 

 
Other premade components might be built in to Quartus, and vary on a case by case basis.  

4.2 Results 

4.2.1 Architecture 
From the literature above, a system design with a sequential processor and targeted 
hardware acceleration was chosen. Most of the initial design decisions revolved around what 
flight controller tasks could reasonably be transferred over to hardware implementations. 
From the literature, the following list of hardware implementable flight controller tasks 
emerged: 

● Cascaded speed control PID loop calculation 
● Sensor data management 
● Added CPU instructions that facilitate: 

○ Filtering of sensor data 
○ Acceleration of CPU PID tasks 

After an assessment of the work required for each option, each kind of hardware 
acceleration was prioritised. With cascaded loop control and hardware sensor management 
making essential pieces of the system, they were scheduled to be implemented first. 
Whereas added CPU instructions for filtering and PID operations are not required for base 
functionality and hence have a lower priority. 
 
The final architecture is shown below. It describes a central CPU running flight controller 
code connected to sensors and outputs via memory mapped interfaces. The layout was 
implemented using the Qsys tool. 
Each of the components will be covered in the Components section of further below. 
The sensor data management system will be covered in the Sensor Memory Manager 
component. 
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The following three sections are based off both color and component number in the diagram 
above. The component number is in the title of each component. 

4.2.2 Custom Components 
Green on the System Components Diagram. 
These are components implemented from a blank Verilog text file. 

Speed Pulse Timer (8) 
The speed sensor produces a pulse every time the motor completes a unit of rotation. This 
module counts the clock cycles in between pulses from the speed sensor, and then shares 
them with the PID system over a bus. This allows the system to infer the relative speed at 
which the motor is rotating (a unit of rotation can vary depending on the design of the motor). 
 
It was found through testing that the sensor input could not be read as high or low with 100% 
accuracy. Which sometimes caused significantly incorrect speed values to be passed on to 
the rest of the system. 
 
To resolve this problem, a filter was implemented which required the sensor readings over 
five sequential clock cycles to be the same before the value was confirmed as either high or 
low.  
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PID Multiplexer (5) 

Background 

A PID or Proportional Integral Derivative controller takes inputs regarding a systems current 
and desired states, and controls the system to efficiently reach the goal state. In this 
application, the PID controller accepts goal and current rotation speeds, and directs the 
throttle of the motor to achieve the goal rotation speed. 

Design 

This module determines the throttle value according to a PID controller every clock cycle. Its 
gains and registers are variable, which allows it to service a different motor every clock 
cycle. The module can be shared without any loss of performance because the 
communication between motor and FPGA only allows updating of throttle values every few 
thousand clocks, so faster updates are redundant. To this end, the PID calculation is 
restricted to clocks where the Dshot output module has requested a new throttle value. 
It also facilitates control of the PID variables and motor system settings through a memory 
mapped interface. And uses overflow protected signed arithmetic functions to supplement 
the lacking native Verilog capability. 
The Dshot throttle protocol reserves the first 47 throttle values for ESC commands (such as 
reverse rotation), and provides 2000 units of throttle input [12]. The PID module trims and 
offsets the throttle values accordingly. 

Testing 

During debugging difficulty was encountered understanding the modules behaviour during 
conditions that would have been very time consuming to simulate. To further understanding 
of the modules internal state, some internal registers were memory mapped. 
 
Unfortunately difficulty was then encountered tuning and debugging the system due to the 
effort of reading and writing the expanding catalogue of PID variables. Which were only 
displayed as hexadecimal memory values using the JTAG memory access tool. 
A tcl script was created in the Quartus system console to parse the hexadecimal register 
values into human readable signed decimal with labels indicating the variable (eg. 
Proportional Gain). 
 
The accuracy of the PID module was severely affected by the nonlinearity of the speed 
signal. Which reads data in FPGA clock cycles per motor phase revolution.  
This value can be converted into motor revolutions per second by simply dividing by the 
clock speed and number of motor phases. However, because division operations have 
extremely high FPGA resource usage they were initially avoided in the hope that the 
nonlinearity of the raw speed data would not be enough to render the PID system ineffective. 
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A comparison of speed signal data with and without inverting it 

However during testing the system was deemed to require the inversion from clk/phase to 
phase/s. And a hardware divider was added to the system. 
 
Later on, a feedforward term was added during testing due to the constant throttle signal 
required to maintain a constant motor RPM. The purpose of the feedforward term is simply 
to calculate steady state throttle required using the linear relationship between motor speed 
and throttle percentage (visible in the left graph above) and add it to the output signal. The 
lack of a feedforward term in the initial design was an oversight. 
 
Some hardware bugs still remain in the PID module, large errors can cause mathematically 
incorrect throttle values to be calculated. This problem does not affect the results gathered. 

Dshot Output Module (9) 

Background 

Dshot is an electric motor speed controller protocol that conveys digital ESC commands over 
PWM, using one pulse length for logical 1 and one for a logical 0. The protocol centers 
around communication of the throttle values. Which under normal operation comprises 11 
bits of the 16 bit Dshot packet. The remaining bits are a checksum and request for ESC 
telemetry data (over another theoretical communication channel). [12] 

Design 

The Dshot module simply repeats the 12 bits of data sent to it via a bus in the Dshot 
protocol, and calculates the 4 bit crc. Upon finishing one packet, it communicates to the PID 
system that a new throttle value is required. 
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Testing 

Despite measurement of the timing results using an oscilloscope, during testing the timings 
used according to the protocol specification did not work.  
A known working system using the betaflight implementation referenced earlier [12] was 
then used to reverse engineer the correct timings. 
It was found that the ESC required an extended logical 1 pulse, additionally the gap between 
Dshot packets had to be extended to over 10 times its original value. 

Sensor Memory Manager (7) 

Background 

Sensor data coming into the system does not get written in a single clock, but usually comes 
in small parts that have to be collected together to form useful information. Additionally, 
communication with the CPU is not predictable, as the CPU may be busy and unable to 
receive information from a sensor at the exact moment it is available. The CPU may also 
need to access multiple copies of data from the same sensor in any order.  
 
The sensor memory manager is designed to organise incoming sensor information for later 
access via the CPU. It managers the sensor memory to allow multiple iterations of sensor 
data to be stored simultaneously and the memory reused once the CPU has finished with 
the data. 

Design 

The sensor memory manager development process was more in depth due to the lack of 
historical examples. 
The design operates based on the passing of memory base addresses between the CPU 
and the hardware. When the sensor data is received by the hardware, it writes it to a section 
of memory shared between it and the CPU.  
Because the sensor values are received 8 bits at a time. One port allows writes with a width 
of 8 bits, and the other port facilitates reading with a width of 32 bits. When the sensor has 
finished writing its message, it then inserts the address at which the new data is located and 
the sensor that wrote the data into a First In First Out queue created from premade FPGA 
software. The hardware then records that memory as no longer available for further sensor 
data.  
The CPU reads the information from the FIFO queue and carries out whatever tasks are 
associated with that sensor. Once it is finished with the data, it writes the memory address 
back into another buffer, where it is read by the hardware. Once the hardware receives this 
address, it makes that sensor memory available for writing once more. 
 
This mechanism allows the system the flexibility to keep as many old copies of sensor data 
as the CPU requires, and also allows the CPU to interpret the new sensor information 
whenever its ready. 
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Testing 

Although construction was finished, no testing was able to be done on this module. This was 
down to disorganisation (discussed later in section 4). 

4.2.3 Premade Components 
Gray  on the System Components Diagram. 
These components are provided with the tools or have come from other RMIT projects. 

Sensor Queue (6) 
Acts as a buffer for the Sensor Memory Manager output. Allowing the CPU to read from the 
queue when it's ready. Reading from the queue will remove the entry and replace it with the 
next one. 

FPU (3) 
Floating Point Unit, a coprocessor that allows the CPU to do floating point arithmetic 
significantly faster. Appropriate for this design due to the exclusive use of floats for the RMIT 
flight controller code. 

CPU (2) 
A design from the FPGA manufacturer, different features can be enabled and disabled for 
optimized resource usage. The CPU runs flight control software developed in a previous 
RMIT project. With alterations to support the sensor data mechanism described in 
component 7, and drivers added to allow easy access to hardware functions.  
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4.2.4 Debug Components 
Light gray with dotted lines on the System Components Diagram. 
These components are used for debugging and tuning and are not critical parts. 

UART TX (4) 
This module receives 32 bit speed sensor packets from the Speed Pulse Timer module and 
transmits it over a 115200 baud rate UART connection 8 bits at a time. It has a buffer of 
1024 8 bit segments, in an attempt to allow it to operate for short periods of time at higher 
RPMs. However at some higher RPMs the module does not have enough bandwidth to 
maintain a real time data output. 
 
During testing it was apparent that some of the data was corrupted, however this happened 
sporadically enough that it was not deemed necessary to slow the baud rate. 

JTAG Serial (1) 
Sourced from the Altera IP catalogue. This module interfaces with the CPU to allow it to 
forward a serial connection across the JTAG link. This is used as a console in the current 
flight controller software, allowing printf() statements to output text in a useful location. 

4.2.5 Debug Tools (On Laptop) 

Tuning TCL Script 
This tool parses the hexadecimal format register values from the PID module via the Quartus 
command line interface (discussed in the Tools section). It formats each register with a label 
denoting what its value represents.  
Additionally it formats some of the more important PID tuning values into equations that help 
the user determine why the system is producing the current output. For these it parses the 
hexadecimal into signed and unsigned number values. 
TCL has no native signed hexadecimal parsing capability, so the work “Negative” was used 
to represent negative values. Furthermore, the reading of the register values from memory 
does not happen within one FPGA clock cycle, so the values are not guaranteed to sum 
correctly. 
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TCL Script Sample Output 
 

4.3 Discussion 
Not all planned testing was completed, several explanations have been identified for this. 
Many of the tools involved with FPGA development, parts of the Quartus software, are not 
either intuitive or well maintained. Which can lead to irritating issues necessitating trial and 
error problem solving: 

● Qsys does not support scientific notation in parameters and interprets them as 
strings. 

● Qsys interface fails to configure the memory IP blocks in uneven dual port sizes 
(sensor memory). 

● Qsys causes errors in the CPU initialization/bootloader if the CPU name is set to 
“CPU”. 

Verilog, the hardware description language used to write the custom system components, 
can also be difficult to understand. The more time consuming issues with the Verilog 
language were: 

● Saturation arithmetic is not natively supported in Verilog and creates difficult to read 
code when implemented manually. 

● Both inputs and outputs of a Verilog arithmetic operation must be signed for the 
operation to perform signed arithmetic correctly. 

 
In future, these scheduling issues can be alleviated by understanding the comparative size 
of the tools and the size of the industry that maintains them. If the tool is large and complex 
and the industry relatively small, it can be assumed that the tool will have usability issues 
that may increase the time taken unnecessarily. More caution should be shown when 
estimating project time frames without experience in the tools. 
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Another issue that arises from lack of tool experience is the quality of the result. Some of the 
modules with synchronous state changes, in particular the Dshot module, are difficult to read 
or debug. This is because priority was given to creating programs with a small amount of 
variables and lines of code. This approach can create more readable and performant 
programs in interpreted languages like Python. But in Verilog a more explicit style tends to 
create faster and more readable programs. 
 
The project is currently resource limited, meaning the amount of logic units available on the 
FPGA has restricted the amount of functionality that can be implemented.  
One way that Verilog programming is similar to conventional programming is that declaring 
operands as constants rather than variables can have resource utilisation benefits. In its 
current state the PID module has many variables and inputs that can be made constant 
when their values have been determined through experimentation.  
Additionally, resource usage could be further minimized by decreasing the capabilities of the 
inbuilt CPU, which can be configured in a very granular fashion through Qsys. 
 
Finally, the last minute feedforward term addition did waste some of the allotted testing time 
on an issue that was down to a fundamental flaw in the design rather than an integration or 
tuning problem. More care should have been taken during the research phase to ensure the 
design could theoretically perform as required. 

5. Performance Evaluation 
To verify that the implemented FPGA hardware had the potential to improve multirotor 
performance. An experiment was conducted with and without the inbuilt PID hardware 
module, and the motor response was observed. 

5.1 Methodology 
The test was run with both the PID system controlling the motor speed, and with the throttle 
manually set to a constant value. This control was achieved using the Quartus command line 
interface to set the corresponding registers. 
 
Using the testbench described in the Tools section, the motor was taken between ~14 
rev/sec and ~52 rev/sec, with speed sensor data collected using the UART speed 
output/UART TX components. 
 
The time taken for the speed to reach 95% of the goal value was calculated and averaged 
over three trials for each response. 
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5.2 Results 

 
 
95% Rise Time: 

Closed loop: 0.047 seconds 
Open loop: 0.070 seconds 

 
Making the closed loop method 67% faster. 

5.3 Discussion 
The experiment does not effectively demonstrate the full performance improvement possible 
with a PID system in place, nor does it eliminate the possibility of the same improvements 
being applied to conventional sequential flight controller systems. 
 
It demonstrates that performance improvements can be implemented within FPGA hardware 
that do not either decrease the performance or increase the complexity of the rest of the 
system. Unlike comparative sequential systems. 
 
Despite the broad goals, the experiment still contains inaccuracies that, although judged 
have minimal effect on the conclusions, could still be significant. 
When the PID module was used to control the speed, a target speed was established by 
reading back the speed sensor reading from the open loop trial. This method introduces 
slight differences between the current and target speeds in the open and closed loop. This 
can be observed in the data, the final speed for the open loop trial is perceptibly more than 
that of the closed loop (graphs above). 
Other inaccuracies considered include, sample size, temperature variations, voltage 
variations, and enclosure movement. 
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6. Recommendations for Future Work 
Even though all components were created. There still remains work that could significantly 
benefit the project. Some of these were previously discussed in their relevant discussion 
sections, but are summarised here: 
 
Unfinished work 

● PID still has some hardware bugs that affect its practicality 
● Reduced resource utilisation necessary for further additions 
● IMU not yet tested/integrated 

Improvements to existing work 
● The synchronization could be improved in some modules to reduce latencies 
● PID module could be tuned much better to improve motor response speed and 

accuracy 
● Dshot rewritten in a better coding style for easier debugging and modification 

Continuations to existing work 
● Expanding to multiple motors 
● Increase data logging bandwidth 

7. References 
[1] V. Askue, “Fly-by-wire,” Air Med. J., vol. 22, no. 6, pp. 4–5, Nov. 2003. 
[2] “Betaflight Documentation Hardware Reference,” GitHub. [Online]. Available: 

https://github.com/betaflight/betaflight/wiki/Hardware-Reference. [Accessed: 
24-Oct-2019]. 

[3] “Extended Kalman Filter Navigation Overview and Tuning — Dev documentation.” 
[Online]. Available: http://ardupilot.org/dev/docs/extended-kalman-filter.html. [Accessed: 
31-Mar-2019]. 

[4] Intel, “MAX 10 FPGA Device Architecture,” p. 31. 
[5] N. Monterrosa, J. Montoya, F. Jarquín, and C. Bran, “Design, development and 

implementation of a UAV flight controller based on a state machine approach using a 
FPGA embedded system,” in 2016 IEEE/AIAA 35th Digital Avionics Systems 
Conference (DASC), 2016, pp. 1–8. 

[6] J. Young and A. R. Price, “FPGA based UAV flight controller,” in Proceedings of the 
Eleventh Australian International Aerospace Congress, 2005, pp. 1–5. 

[7] G. Premkumar and R. Jayalakshmi, “Design and Implementation of FPGA Based 
Quadcopter,” vol. 5, no. 3, p. 5, Mar. 2018. 

[8] C. Dominguez-Bonilla, A. Gutierrez, F. Jimenez, and H. R. Chamorro, “SysML 
methodology for FPGA-based Controller design for quadcopters,” in 2016 IEEE 7th 
Annual Information Technology, Electronics and Mobile Communication Conference 
(IEMCON), 2016, pp. 1–6. 

[9] J. C. Vianna Junior, J. C. De Paula, G. V. Leandro, and M. C. Bonfim, “Stability Control 
of a Quad-rotor Using a PID Controller,” Braz. J. Instrum. Control, vol. 1, no. 1, p. 15, 
Oct. 2013. 

[10]Department of Electronic and Computer Engineering, The Hong Kong University of 
Science and Technology, Hong Kong, China, H. L. Chan, and K. T. Woo, “Design and 

22 

https://www.zotero.org/google-docs/?3weZzN
https://www.zotero.org/google-docs/?3weZzN
https://www.zotero.org/google-docs/?3weZzN
https://www.zotero.org/google-docs/?3weZzN
https://www.zotero.org/google-docs/?3weZzN
https://www.zotero.org/google-docs/?3weZzN
https://www.zotero.org/google-docs/?3weZzN
https://www.zotero.org/google-docs/?3weZzN
https://www.zotero.org/google-docs/?3weZzN
https://www.zotero.org/google-docs/?3weZzN
https://www.zotero.org/google-docs/?3weZzN
https://www.zotero.org/google-docs/?3weZzN
https://www.zotero.org/google-docs/?3weZzN
https://www.zotero.org/google-docs/?3weZzN
https://www.zotero.org/google-docs/?3weZzN
https://www.zotero.org/google-docs/?3weZzN
https://www.zotero.org/google-docs/?3weZzN
https://www.zotero.org/google-docs/?3weZzN
https://www.zotero.org/google-docs/?3weZzN
https://www.zotero.org/google-docs/?3weZzN
https://www.zotero.org/google-docs/?3weZzN
https://www.zotero.org/google-docs/?3weZzN
https://www.zotero.org/google-docs/?3weZzN
https://www.zotero.org/google-docs/?3weZzN
https://www.zotero.org/google-docs/?3weZzN
https://www.zotero.org/google-docs/?3weZzN
https://www.zotero.org/google-docs/?3weZzN
https://www.zotero.org/google-docs/?3weZzN
https://www.zotero.org/google-docs/?3weZzN
https://www.zotero.org/google-docs/?3weZzN
https://www.zotero.org/google-docs/?3weZzN
https://www.zotero.org/google-docs/?3weZzN
https://www.zotero.org/google-docs/?3weZzN
https://www.zotero.org/google-docs/?3weZzN
https://www.zotero.org/google-docs/?3weZzN
https://www.zotero.org/google-docs/?3weZzN
https://www.zotero.org/google-docs/?3weZzN
https://www.zotero.org/google-docs/?3weZzN
https://www.zotero.org/google-docs/?3weZzN
https://www.zotero.org/google-docs/?3weZzN
https://www.zotero.org/google-docs/?3weZzN
https://www.zotero.org/google-docs/?3weZzN
https://www.zotero.org/google-docs/?3weZzN
https://www.zotero.org/google-docs/?3weZzN
https://www.zotero.org/google-docs/?3weZzN
https://www.zotero.org/google-docs/?3weZzN
https://www.zotero.org/google-docs/?3weZzN


 

Control of Small Quadcopter System with Motor Closed Loop Speed Control,” Int. J. 
Mech. Eng. Robot. Res., 2015. 

[11]Z. Qun, H. Zhining, W. Hongshuo, L. Hailin, and Q. Zhaowei, “ARM (advanced RISC 
(reduced instruction set computer) machines) and FPGA (field-programmable gate 
array) based navigation and flight control system for unmanned helicopter,” 
CN102360218 (A), 22-Feb-2012. 

[12]“DSHOT600 & 150 -> digital one shot motor (ESC) protocol by blckmn · Pull Request 
#1282,” GitHub. [Online]. Available: https://github.com/betaflight/betaflight/pull/1282. 
[Accessed: 31-May-2019]. 

23 

https://www.zotero.org/google-docs/?3weZzN
https://www.zotero.org/google-docs/?3weZzN
https://www.zotero.org/google-docs/?3weZzN
https://www.zotero.org/google-docs/?3weZzN
https://www.zotero.org/google-docs/?3weZzN
https://www.zotero.org/google-docs/?3weZzN
https://www.zotero.org/google-docs/?3weZzN
https://www.zotero.org/google-docs/?3weZzN
https://www.zotero.org/google-docs/?3weZzN
https://www.zotero.org/google-docs/?3weZzN
https://www.zotero.org/google-docs/?3weZzN
https://www.zotero.org/google-docs/?3weZzN
https://www.zotero.org/google-docs/?3weZzN
https://www.zotero.org/google-docs/?3weZzN
https://www.zotero.org/google-docs/?3weZzN

