

FPGA Flight
Controller

Jack Williams - s3601511

1. Summary 3

2. Introduction 3
2.1 Gap Analysis 4
2.2 FPGAs as the Solution 4
2.3 Problem Statement 5

2.3.1 Design 6
2.3.2 Construction 6
2.3.3 Results 6

3. Literature Review 6
3.1 Overall Architecture Types 6

3.1.1 Hardware Sensor Processing Only 6
3.1.2 Entirely Hardware Implementation 7
3.1.3 Accelerated Stability Calculation 7
3.1.4 Accelerated Cascaded Speed Control 7

3.2 IO Interface Design 8
3.3 Sensor Initialisation 8

4. Development 9
4.1 Methodology 9

4.1.1 Tools 9
Testbench/Hardware 9
Software 10

4.1.2 Development Process 11
4.2 Results 12

4.2.1 Architecture 12
4.2.2 Custom Components 13

Speed Pulse Timer (8) 13
PID Multiplexer (5) 14

Background 14
Design 14
Testing 14

Dshot Output Module (9) 15
Background 15
Design 15
Testing 15

Sensor Memory Manager (7) 16
Background 16
Design 16
Testing 17

4.2.3 Premade Components 17
Sensor Queue (6) 17
FPU (3) 17

1

CPU (2) 17
4.2.4 Debug Components 18

UART TX (4) 18
JTAG Serial (1) 18

4.2.5 Debug Tools (On Laptop) 18
Tuning TCL Script 18

4.3 Discussion 19

5. Performance Evaluation 20
5.1 Methodology 20
5.2 Results 21
5.3 Discussion 21

6. Recommendations for Future Work 22

7. References 22

2

1. Summary
This report details the development and evaluation of a flight controller system with digital
hardware acceleration to improve performance and simplify software.
First the report will introduce the problems with existing flight controller designs, followed by
how the use of a Field Programmable Gate Array can improve the situation. Finally it will
detail the issues obstructing an FPGA implementation.
As the first step in the design, a literature review is conducted to establish how others have
implemented similar systems. Once this information is distilled, the development
methodology is established. Including the tools and workflow necessary for each design
component (or module).
After this, an overview of the system architecture will be shown, with an explanation of the
function of each module and how the design was altered during testing. The design process
and results will be discussed with a critical evaluation of the method and its outcomes.
Subsequently, a performance evaluation will be conducted on the new system. Which will
establish the success of the design from a performance perspective.
Finally, the report will conclude with some recommendations for future work.

2. Introduction
Typically, a flight controller is defined as a system, usually electronic, that assists or allows
an airborne vehicle to control its position and attitude while in flight.
In the particular field of multirotor UAVs, a flight controller is required to maintain stability.
Pilot inputs are simply used to modify the goal state that the stability system aims for. For
example, the pilot might request a desired attitude or speed through the transmitter. Like
some modern aircraft, these multirotors are unflyable without the assistance of a computer
[1].

For research applications, these flight controllers require a combination of performance,
flexibility and simplicity. And should allow the easy implementation of new airframe
configurations, control system software or sensor inputs. While having enough spare
performance to cope with the extra workload. In flight controller terms “performance” is
usually defined as the stability of the aircraft in regards to its goal state. For example, how
much does a particular disturbance affect the aircrafts state? A more performant system will
return to the desired state more quickly and accurately.
The performance of a system is affected by how quickly it can feed sensor inputs into its
internal model and produce a response. As well as how accurately the internal model
responds. The delay between data being fed in and acted upon is a measurable
performance metric and will be the focus of this report.

3

https://www.zotero.org/google-docs/?7QjtYK

2.1 Gap Analysis
There are a few reasons why conventional approaches to flight controller design have
fundamentally compromised performance.
The conventional approach to multirotor flight controller hardware is through the use of an
SOC, or system on chip. Which implements a large sequential computer in a single small
package. The hardware at work in these complex systems are usually powerful
microcontrollers, like the current ARM Cortex series [2].
The multifaceted task of managing sensor, commands, stability and output operations can
be challenging for a single processor. Especially with some of the intensive mathematical
operations involved in maintaining stability, such as numerical integration and kalman
filtering [3]. When the processor does not have sufficient resources it will cause the system
latency to increase, and hence overall flight controller performance to decrease.

In addition, RMIT requires an accessible platform for multirotor research projects. The
management of the intensive tasks discussed above can lead flight controller designers to
large, complex and slow flight control software. Which has to balance numerous real time
tasks with multiple priorities. Typically this complex software can become an obstacle when
repurposing the system. Increasing development time.

But other flight controller hardware options exist that can ease this complexity while also
relieving associated performance issues, this project shall be exploring one in particular.

2.2 FPGAs as the Solution
Field Programmable Gate Arrays, or FPGAs, consist of many discrete digital logic devices,
such as gates, memory and look up tables. This hardware can be interconnected through
software, to create more complex digital systems, such as a conventional processor. The
flexibility of this system allows the creation of very specific and optimised hardware for niche
applications.
Hence FPGAs can act somewhat like an Application Specific Integrated Circuit, or ASIC.
Except without the large costs associated with ASIC development and tooling.
Below can be seen an FPGA schematic, consisting of (among other things) many thousands
of discrete logic components.

4

https://www.zotero.org/google-docs/?BCYIbX
https://www.zotero.org/google-docs/?cGiWYM

FPGA Diagram - Intel, “MAX 10 FPGA Device Architecture,” p. 31. [4]

FPGAs allow industries and applications that might otherwise not have the resources for
ASIC development to access the performance of custom silicon. However the performance
when compared to ASICs will always be comparatively worse, as FPGAs incur a
performance handicap for their complex internals and subsequent flexibility.

In respect to UAV flight controllers, this facilitates moving some of its tasks into hardware
modules within the FPGA. Which has the potential to:

● Improve latency and update frequency
● Reduce the size and complexity of the codebase
● Make it easier for new features to be added to existing hardware

FPGAs do have limitations on the amount of digital logic that can be implemented on one
unit. The usage of the internal resources shall be referred to as resource usage for the
context of this report. The resource usage of an FPGA is greatly affected by the type of the
logic implemented, so methods for precalculating the resource usage of a design are not
used.

2.3 Problem Statement
Naturally an FPGA implementation comes with its own set of problems, this report aims to
address each of them, and produce a working example to demonstrate the designs
effectiveness.

5

https://www.zotero.org/google-docs/?RQ65SC

2.3.1 Design
However, many of the design decisions surrounding an FPGA flight controller
implementation are not straightforward, as the sheer flexibility of the hardware can
overwhelm any attempts to pin down system details.
Many architecture decisions are needed to lay out interfaces and system boundaries, which
will allow the work to be divided into individually manageable portions.
Much of this design will be drawn from historical analysis, identified in the Literature Review
(to follow). The final design will be discussed in the Development Results section.

2.3.2 Construction
Furthermore, the creation and testing of FPGA “programs” requires specialist knowledge and
experience with a suite of software tools unique to the platform. In order to complete the
design implementation, a Development Methodology will be constructed detailing the tools
and processes necessary to implement the design.
Testing and debugging of FPGA projects requires further work and a thorough process in
order to combat the oftentimes obstructive tools.

2.3.3 Results
In order to draw conclusions from the project, a quantifiable performance metric and metric
measuring system must be established, this will be discussed in the Performance Evaluation
section.

3. Literature Review
Research papers provide few examples of FPGA flight controller implementations. However,
from the few that do exist, important information can be extracted about how others have
utilised the FPGAs flexibility.
Each of the following sections lists a design factor, and each historical examples approach
will be subdivided by their approach to this design factor.

3.1 Overall Architecture Types
Of particular interest to this report is exactly what tasks the FPGA fulfils within these flight
control systems. As such an innately flexible piece of hardware, analysing historical
configurations may help to understand the design space, as well as the compromises and
tradeoffs made in each design. The following sections each describe a different architecture
type that was seen in previous implementations of FPGA flight controllers.

3.1.1 Hardware Sensor Processing Only
The only common feature between each of the five implementations is that they utilise the
FPGA for processing the input data from sensors. In one extreme instance [5], the FPGA

6

https://www.zotero.org/google-docs/?flaqWe

was only used for processing inputs, and flight control was done on a seperate
microcontroller connected to the FPGA via serial connection.
This makes it clear that the parallel nature of FPGAs is suited toward the independent
collection of disparate data from sensor sources. Which “lets the CPU concentrate on
controlling the aircraft” [6], as some data collection tasks can be expensive and interrupt the
CPU during real time calculations.

3.1.2 Entirely Hardware Implementation
Implementations [7] and [8] take FPGA utilisation to the other end of the spectrum, and have
no external CPU or softcore at all. Stabilisation is performed using closed loop control
embedded directly in the FPGA.
Unfortunately, neither paper focuses on the performance of such an approach, and both
stabilisation methods are extremely basic by modern standards. Furthermore, neither
hardware actually flew, with [8] confined to a simulation and [7] only demonstrated on a test
stand.
While this design choice might offer theoretically minimal latency, it appears that
implementation of a complex modern control system inside the FPGA fabric may not have
been worth the performance improvements. Furthermore, the decrease in flexibility for what
is intended to be easy to modify system makes this sort of design more unappealing.

3.1.3 Accelerated Stability Calculation
In paper [6], a middle ground between the stability coprocessor of [5] and stability hardware
modules of [7] and [8] is taken.
In this approach a softcore CPU offloads input, output, and select intensive stability
calculation tasks to FPGA hardware modules. While the control loop is still run sequentially,
it allows (for this implementation) a minimum of only 11 CPU instructions to be run each
loop. Despite the potential performance improvements, the paper still touts that “the design
is easily expanded using hardware modules or by modifying the control software”[6].

This architecture type is selected for further consideration.

3.1.4 Accelerated Cascaded Speed Control
One area where improvement in control latency has been suggested to have a significant
impact is the translation of propeller speed to motor throttle.
This proposal stands out in practicality because the relationship between propeller speed
and thrust is almost linear for conventional flight [9]. This means the system can be modelled
accurately with simple PID control.
Systems that control the motor throttle in a separate control system to the attitude, known as
“cascaded motor speed control and attitude control” systems, have already been shown to
improve hovering stability [10].
With a simple implementation that can be generalised among many different multirotor
configurations, a cascaded speed control is an effective way to leverage the abilities of
FPGA hardware with minimal development resources.

7

https://www.zotero.org/google-docs/?Rk9Yxq
https://www.zotero.org/google-docs/?Fxd0Qt
https://www.zotero.org/google-docs/?yijPOw
https://www.zotero.org/google-docs/?8AMzwc
https://www.zotero.org/google-docs/?IwIdYt
https://www.zotero.org/google-docs/?nPD7z4
https://www.zotero.org/google-docs/?xW2vg7
https://www.zotero.org/google-docs/?YmsbMF
https://www.zotero.org/google-docs/?PutKm3
https://www.zotero.org/google-docs/?TBMe4Q
https://www.zotero.org/google-docs/?huTKvJ
https://www.zotero.org/google-docs/?QwqYuf

But it creates issues regarding ease of configuration in the event that the control constants
(ie PID gains) of the system change.

3.2 IO Interface Design
Another area of interest is the interface between hardware IO, such as sensors, and
sequential processor modules (if any).
The possible designs for this bus are numerous and the advantages and disadvantages of
each are not immediately apparent. RMIT also wishes to avoid interrupt driven systems due
to the added complexity.

Few of the references go into much detail on this system, referring to it only as a “concurrent
bus” [11]. Only implementation [6] has enough information to be of use.
In this implementation, sensor data is accessed when the CPU receives an interrupt from the
hardware informing it that new data is available. It is then occupied for 3 clock cycles as it
transfers the data into local registers.
This method has minimal CPU load when compared with conventional flight controllers, but
could still potentially be made even less CPU intensive through direct memory access or
similar.

Unfortunately all the historical FPGA flight controller examples found described some form of
interrupt driven IO mechanism. As such, caution must be used in the IO systems design.

3.3 Sensor Initialisation
One gap in the current research centers around identifying ways of dealing with the
initialisation of peripherals.
The problem of initialisation is identified in paper [7], where special modifications had to be
made to the hardware controlling the ESC output to initialise at system start. The issue is
created when hardware modules are used to manage IO, and one or more peripherals
require configuration data to be sent in order to start operating.
With more complex peripherals, creating hardware modules to configure the external
devices would become significantly more complex. Additionally, given the sequential nature
of serial communication, the parallel nature of FPGA programming does not lend itself well
to this task.
Furthermore, flight controller software designers would benefit from having control over each
device configuration without having to reprogram the FPGAs hardware modules (a task
requiring a large toolchain and specific knowledge).

In order to minimise complexity while still maintaining performance. Hardware functions that
allow the passing of peripheral control from CPU to hardware module will be investigated as
a solution to all these problems. When the system starts, the CPU could configure and setup
each peripheral sequentially, and then pass communication over to the hardware modules
designed to communicate with that device.
If the solution works as intended, it would increase the time taken for the system to start, but
otherwise still maintain the FPGAs potential performance advantage.

8

https://www.zotero.org/google-docs/?E0O2CU
https://www.zotero.org/google-docs/?M7c5Y9
https://www.zotero.org/google-docs/?cejTCK

4. Development

4.1 Methodology

4.1.1 Tools
The FPGA product ecosystem was chosen based on what RMIT already had resources for.
Consequently an Intel/Altera FPGA development board and associated Quartus software
were selected as the testbed for the project.

Testbench/Hardware
Once the FPGA is programmed, testing with motors and other associated hardware is
essential in order to debug and tune. The FPGA MAX10 development board connects to a
USB JTAG adaptor that allows it to be accessed via the laptop. The board is powered over
another USB connection and interfaces with hardware via a GPIO header.
The oscilloscope can then be used to monitor signals into and out of the FPGA, ensuring
they behave as expected.
The electric motor is securely mounted with a vice and covered with a clear plastic container
to limit exposure to spinning propellers.
A UART serial adapter is used to receive data streams from the FPGA for logging and
further analysis.

Components

● FPGA Development Board
● USB Blaster
● Oscilloscope
● Multimeter
● Motor + Mounting
● ESC + Speed Sensor
● Power Supply
● UART Serial Adapter
● IMU
● Laptop

9

FPGA and Motor Testbench

Software
FPGAs “programs” are files that specify a configuration of the FPGAs digital logic
components, ie a description of how the FPGA is configured for a particular application.
These binary files are sent over to the development board via a JTAG adaptor, and are
created through Intel/Alteras integrated development environment Quartus.

Within Quartus the program is created in the hardware description language Verilog. Which
can be compiled, or “synthesized” into an arrangement of the FPGAs digital components.
Verilog is an interesting language due to its concurrency, any portion of the program can be
in “execution” at any time. This can make it difficult for those familiar with sequential
programming languages to formulate their ideas correctly.

Quartus contains a library of premade digital components, anything from simple arithmetic
units up to reasonably full featured CPUs. It can also generate different types of bus
interfaces to connect these components automatically through a tool called Qsys. Many of
the components and buses are proprietary, but the user can add custom components
(perhaps designed through Verilog as above) to take advantage of Qsys for their particular
application.

Also included in the Quartus software is a simulation tool called Modelsim, which allows the
designer to test Verilog programs locally. This tool is a key component of the workflow, as
information about the FPGAs internal state can be difficult to obtain from the development
board, but very easy through the simulator.
The user may also find the need to create testbenches to automatically configure the Verilog
module for simulation. As often the configuration of the modules input and outputs may differ
if the module is running in a simulated environment, or among other modules in hardware.

Quartus also comes with the toolchain for building applications to run on the premade CPU
mentioned earlier. This CPU, the NIOS II, can be detected over the JTAG interface and
flashed with a program via the Nios Software Build Tools. The SBT compiles the CPU code,
creates the Operating System, programs the processor over JTAG and sets up a remote
GDB instance for debugging the software in realtime.

10

The CPU code for this project was written in C++, an object oriented language that can
make it difficult to interact with the hardware on the bit by bit level required, but allows the
abstraction of more complex flight controller concepts and is reasonably approachable.

In addition to memory interactions done through the CPU, Quartus can access certain
hardware functions via a command line interface. This interface uses the TCL scripting
language to automate JTAG interface functions, such as accessing mapped memory.
Hardware modules in the FPGA that are connected to the built in Avalon Memory Mapped
bus can be accessed via TCL functions as long as each register or memory location has
been assigned an address. Management of the Avalon bus is done through Qsys
(mentioned above).

In this application, post processing of the raw register data was needed in order to aid in
tuning some of the hardware modules. This script was written in TCL and will be discussed
in more detail in the Development Results section.

Microsoft excel was also used to graph and analyse motor speed data collected during
experiments.

4.1.2 Development Process
Developing the architecture required research and planning to establish the design, and then
further planning and research when the development inevitably ran into problems with
integration.

The development process starts with the design of the artitecture:

● Literature review/historical analysis
● System requirements developed
● System architecture/diagram

○ Deciding upon boundaries between system components
● Component requirements

○ Which other components need to be connected and in what way
○ Debugging methods

● Integration
○ For some Quartus problems removing every component and adding them

back in was required

Once the system is designed. The development of the custom FPGA modules begins:

● Module declaration written, declaring inputs and outputs along with their sizes
● First implementation, correcting errors until it compiles without any severe warnings
● Writing testbenches to automate simulation, initialising variables etc.
● Simulation in Modelsim

○ Can produce major issues that require a second pass
● Hardware test,

○ Using the oscilloscope and multimeter to gather more information about
hardware outputs.

11

● Inevitably more simulation to further clarify the issues seen under hardware testing
● Final pass to correct these issues

Other premade components might be built in to Quartus, and vary on a case by case basis.

4.2 Results

4.2.1 Architecture
From the literature above, a system design with a sequential processor and targeted
hardware acceleration was chosen. Most of the initial design decisions revolved around what
flight controller tasks could reasonably be transferred over to hardware implementations.
From the literature, the following list of hardware implementable flight controller tasks
emerged:

● Cascaded speed control PID loop calculation
● Sensor data management
● Added CPU instructions that facilitate:

○ Filtering of sensor data
○ Acceleration of CPU PID tasks

After an assessment of the work required for each option, each kind of hardware
acceleration was prioritised. With cascaded loop control and hardware sensor management
making essential pieces of the system, they were scheduled to be implemented first.
Whereas added CPU instructions for filtering and PID operations are not required for base
functionality and hence have a lower priority.

The final architecture is shown below. It describes a central CPU running flight controller
code connected to sensors and outputs via memory mapped interfaces. The layout was
implemented using the Qsys tool.
Each of the components will be covered in the Components section of further below.
The sensor data management system will be covered in the Sensor Memory Manager
component.

12

The following three sections are based off both color and component number in the diagram
above. The component number is in the title of each component.

4.2.2 Custom Components
Green on the System Components Diagram.
These are components implemented from a blank Verilog text file.

Speed Pulse Timer (8)
The speed sensor produces a pulse every time the motor completes a unit of rotation. This
module counts the clock cycles in between pulses from the speed sensor, and then shares
them with the PID system over a bus. This allows the system to infer the relative speed at
which the motor is rotating (a unit of rotation can vary depending on the design of the motor).

It was found through testing that the sensor input could not be read as high or low with 100%
accuracy. Which sometimes caused significantly incorrect speed values to be passed on to
the rest of the system.

To resolve this problem, a filter was implemented which required the sensor readings over
five sequential clock cycles to be the same before the value was confirmed as either high or
low.

13

PID Multiplexer (5)

Background

A PID or Proportional Integral Derivative controller takes inputs regarding a systems current
and desired states, and controls the system to efficiently reach the goal state. In this
application, the PID controller accepts goal and current rotation speeds, and directs the
throttle of the motor to achieve the goal rotation speed.

Design

This module determines the throttle value according to a PID controller every clock cycle. Its
gains and registers are variable, which allows it to service a different motor every clock
cycle. The module can be shared without any loss of performance because the
communication between motor and FPGA only allows updating of throttle values every few
thousand clocks, so faster updates are redundant. To this end, the PID calculation is
restricted to clocks where the Dshot output module has requested a new throttle value.
It also facilitates control of the PID variables and motor system settings through a memory
mapped interface. And uses overflow protected signed arithmetic functions to supplement
the lacking native Verilog capability.
The Dshot throttle protocol reserves the first 47 throttle values for ESC commands (such as
reverse rotation), and provides 2000 units of throttle input [12]. The PID module trims and
offsets the throttle values accordingly.

Testing

During debugging difficulty was encountered understanding the modules behaviour during
conditions that would have been very time consuming to simulate. To further understanding
of the modules internal state, some internal registers were memory mapped.

Unfortunately difficulty was then encountered tuning and debugging the system due to the
effort of reading and writing the expanding catalogue of PID variables. Which were only
displayed as hexadecimal memory values using the JTAG memory access tool.
A tcl script was created in the Quartus system console to parse the hexadecimal register
values into human readable signed decimal with labels indicating the variable (eg.
Proportional Gain).

The accuracy of the PID module was severely affected by the nonlinearity of the speed
signal. Which reads data in FPGA clock cycles per motor phase revolution.
This value can be converted into motor revolutions per second by simply dividing by the
clock speed and number of motor phases. However, because division operations have
extremely high FPGA resource usage they were initially avoided in the hope that the
nonlinearity of the raw speed data would not be enough to render the PID system ineffective.

14

https://www.zotero.org/google-docs/?H2jtv0

A comparison of speed signal data with and without inverting it

However during testing the system was deemed to require the inversion from clk/phase to
phase/s. And a hardware divider was added to the system.

Later on, a feedforward term was added during testing due to the constant throttle signal
required to maintain a constant motor RPM. The purpose of the feedforward term is simply
to calculate steady state throttle required using the linear relationship between motor speed
and throttle percentage (visible in the left graph above) and add it to the output signal. The
lack of a feedforward term in the initial design was an oversight.

Some hardware bugs still remain in the PID module, large errors can cause mathematically
incorrect throttle values to be calculated. This problem does not affect the results gathered.

Dshot Output Module (9)

Background

Dshot is an electric motor speed controller protocol that conveys digital ESC commands over
PWM, using one pulse length for logical 1 and one for a logical 0. The protocol centers
around communication of the throttle values. Which under normal operation comprises 11
bits of the 16 bit Dshot packet. The remaining bits are a checksum and request for ESC
telemetry data (over another theoretical communication channel). [12]

Design

The Dshot module simply repeats the 12 bits of data sent to it via a bus in the Dshot
protocol, and calculates the 4 bit crc. Upon finishing one packet, it communicates to the PID
system that a new throttle value is required.

15

https://www.zotero.org/google-docs/?pepGCI

Testing

Despite measurement of the timing results using an oscilloscope, during testing the timings
used according to the protocol specification did not work.
A known working system using the betaflight implementation referenced earlier [12] was
then used to reverse engineer the correct timings.
It was found that the ESC required an extended logical 1 pulse, additionally the gap between
Dshot packets had to be extended to over 10 times its original value.

Sensor Memory Manager (7)

Background

Sensor data coming into the system does not get written in a single clock, but usually comes
in small parts that have to be collected together to form useful information. Additionally,
communication with the CPU is not predictable, as the CPU may be busy and unable to
receive information from a sensor at the exact moment it is available. The CPU may also
need to access multiple copies of data from the same sensor in any order.

The sensor memory manager is designed to organise incoming sensor information for later
access via the CPU. It managers the sensor memory to allow multiple iterations of sensor
data to be stored simultaneously and the memory reused once the CPU has finished with
the data.

Design

The sensor memory manager development process was more in depth due to the lack of
historical examples.
The design operates based on the passing of memory base addresses between the CPU
and the hardware. When the sensor data is received by the hardware, it writes it to a section
of memory shared between it and the CPU.
Because the sensor values are received 8 bits at a time. One port allows writes with a width
of 8 bits, and the other port facilitates reading with a width of 32 bits. When the sensor has
finished writing its message, it then inserts the address at which the new data is located and
the sensor that wrote the data into a First In First Out queue created from premade FPGA
software. The hardware then records that memory as no longer available for further sensor
data.
The CPU reads the information from the FIFO queue and carries out whatever tasks are
associated with that sensor. Once it is finished with the data, it writes the memory address
back into another buffer, where it is read by the hardware. Once the hardware receives this
address, it makes that sensor memory available for writing once more.

This mechanism allows the system the flexibility to keep as many old copies of sensor data
as the CPU requires, and also allows the CPU to interpret the new sensor information
whenever its ready.

16

https://www.zotero.org/google-docs/?alqcbl

Testing

Although construction was finished, no testing was able to be done on this module. This was
down to disorganisation (discussed later in section 4).

4.2.3 Premade Components
Gray on the System Components Diagram.
These components are provided with the tools or have come from other RMIT projects.

Sensor Queue (6)
Acts as a buffer for the Sensor Memory Manager output. Allowing the CPU to read from the
queue when it's ready. Reading from the queue will remove the entry and replace it with the
next one.

FPU (3)
Floating Point Unit, a coprocessor that allows the CPU to do floating point arithmetic
significantly faster. Appropriate for this design due to the exclusive use of floats for the RMIT
flight controller code.

CPU (2)
A design from the FPGA manufacturer, different features can be enabled and disabled for
optimized resource usage. The CPU runs flight control software developed in a previous
RMIT project. With alterations to support the sensor data mechanism described in
component 7, and drivers added to allow easy access to hardware functions.

17

4.2.4 Debug Components
Light gray with dotted lines on the System Components Diagram.
These components are used for debugging and tuning and are not critical parts.

UART TX (4)
This module receives 32 bit speed sensor packets from the Speed Pulse Timer module and
transmits it over a 115200 baud rate UART connection 8 bits at a time. It has a buffer of
1024 8 bit segments, in an attempt to allow it to operate for short periods of time at higher
RPMs. However at some higher RPMs the module does not have enough bandwidth to
maintain a real time data output.

During testing it was apparent that some of the data was corrupted, however this happened
sporadically enough that it was not deemed necessary to slow the baud rate.

JTAG Serial (1)
Sourced from the Altera IP catalogue. This module interfaces with the CPU to allow it to
forward a serial connection across the JTAG link. This is used as a console in the current
flight controller software, allowing printf() statements to output text in a useful location.

4.2.5 Debug Tools (On Laptop)

Tuning TCL Script
This tool parses the hexadecimal format register values from the PID module via the Quartus
command line interface (discussed in the Tools section). It formats each register with a label
denoting what its value represents.
Additionally it formats some of the more important PID tuning values into equations that help
the user determine why the system is producing the current output. For these it parses the
hexadecimal into signed and unsigned number values.
TCL has no native signed hexadecimal parsing capability, so the work “Negative” was used
to represent negative values. Furthermore, the reading of the register values from memory
does not happen within one FPGA clock cycle, so the values are not guaranteed to sum
correctly.

18

TCL Script Sample Output

4.3 Discussion
Not all planned testing was completed, several explanations have been identified for this.
Many of the tools involved with FPGA development, parts of the Quartus software, are not
either intuitive or well maintained. Which can lead to irritating issues necessitating trial and
error problem solving:

● Qsys does not support scientific notation in parameters and interprets them as
strings.

● Qsys interface fails to configure the memory IP blocks in uneven dual port sizes
(sensor memory).

● Qsys causes errors in the CPU initialization/bootloader if the CPU name is set to
“CPU”.

Verilog, the hardware description language used to write the custom system components,
can also be difficult to understand. The more time consuming issues with the Verilog
language were:

● Saturation arithmetic is not natively supported in Verilog and creates difficult to read
code when implemented manually.

● Both inputs and outputs of a Verilog arithmetic operation must be signed for the
operation to perform signed arithmetic correctly.

In future, these scheduling issues can be alleviated by understanding the comparative size
of the tools and the size of the industry that maintains them. If the tool is large and complex
and the industry relatively small, it can be assumed that the tool will have usability issues
that may increase the time taken unnecessarily. More caution should be shown when
estimating project time frames without experience in the tools.

19

Another issue that arises from lack of tool experience is the quality of the result. Some of the
modules with synchronous state changes, in particular the Dshot module, are difficult to read
or debug. This is because priority was given to creating programs with a small amount of
variables and lines of code. This approach can create more readable and performant
programs in interpreted languages like Python. But in Verilog a more explicit style tends to
create faster and more readable programs.

The project is currently resource limited, meaning the amount of logic units available on the
FPGA has restricted the amount of functionality that can be implemented.
One way that Verilog programming is similar to conventional programming is that declaring
operands as constants rather than variables can have resource utilisation benefits. In its
current state the PID module has many variables and inputs that can be made constant
when their values have been determined through experimentation.
Additionally, resource usage could be further minimized by decreasing the capabilities of the
inbuilt CPU, which can be configured in a very granular fashion through Qsys.

Finally, the last minute feedforward term addition did waste some of the allotted testing time
on an issue that was down to a fundamental flaw in the design rather than an integration or
tuning problem. More care should have been taken during the research phase to ensure the
design could theoretically perform as required.

5. Performance Evaluation
To verify that the implemented FPGA hardware had the potential to improve multirotor
performance. An experiment was conducted with and without the inbuilt PID hardware
module, and the motor response was observed.

5.1 Methodology
The test was run with both the PID system controlling the motor speed, and with the throttle
manually set to a constant value. This control was achieved using the Quartus command line
interface to set the corresponding registers.

Using the testbench described in the Tools section, the motor was taken between ~14
rev/sec and ~52 rev/sec, with speed sensor data collected using the UART speed
output/UART TX components.

The time taken for the speed to reach 95% of the goal value was calculated and averaged
over three trials for each response.

20

5.2 Results

95% Rise Time:

Closed loop: 0.047 seconds
Open loop: 0.070 seconds

Making the closed loop method 67% faster.

5.3 Discussion
The experiment does not effectively demonstrate the full performance improvement possible
with a PID system in place, nor does it eliminate the possibility of the same improvements
being applied to conventional sequential flight controller systems.

It demonstrates that performance improvements can be implemented within FPGA hardware
that do not either decrease the performance or increase the complexity of the rest of the
system. Unlike comparative sequential systems.

Despite the broad goals, the experiment still contains inaccuracies that, although judged
have minimal effect on the conclusions, could still be significant.
When the PID module was used to control the speed, a target speed was established by
reading back the speed sensor reading from the open loop trial. This method introduces
slight differences between the current and target speeds in the open and closed loop. This
can be observed in the data, the final speed for the open loop trial is perceptibly more than
that of the closed loop (graphs above).
Other inaccuracies considered include, sample size, temperature variations, voltage
variations, and enclosure movement.

21

6. Recommendations for Future Work
Even though all components were created. There still remains work that could significantly
benefit the project. Some of these were previously discussed in their relevant discussion
sections, but are summarised here:

Unfinished work

● PID still has some hardware bugs that affect its practicality
● Reduced resource utilisation necessary for further additions
● IMU not yet tested/integrated

Improvements to existing work
● The synchronization could be improved in some modules to reduce latencies
● PID module could be tuned much better to improve motor response speed and

accuracy
● Dshot rewritten in a better coding style for easier debugging and modification

Continuations to existing work
● Expanding to multiple motors
● Increase data logging bandwidth

7. References
[1] V. Askue, “Fly-by-wire,” Air Med. J., vol. 22, no. 6, pp. 4–5, Nov. 2003.
[2] “Betaflight Documentation Hardware Reference,” GitHub. [Online]. Available:

https://github.com/betaflight/betaflight/wiki/Hardware-Reference. [Accessed:
24-Oct-2019].

[3] “Extended Kalman Filter Navigation Overview and Tuning — Dev documentation.”
[Online]. Available: http://ardupilot.org/dev/docs/extended-kalman-filter.html. [Accessed:
31-Mar-2019].

[4] Intel, “MAX 10 FPGA Device Architecture,” p. 31.
[5] N. Monterrosa, J. Montoya, F. Jarquín, and C. Bran, “Design, development and

implementation of a UAV flight controller based on a state machine approach using a
FPGA embedded system,” in 2016 IEEE/AIAA 35th Digital Avionics Systems
Conference (DASC), 2016, pp. 1–8.

[6] J. Young and A. R. Price, “FPGA based UAV flight controller,” in Proceedings of the
Eleventh Australian International Aerospace Congress, 2005, pp. 1–5.

[7] G. Premkumar and R. Jayalakshmi, “Design and Implementation of FPGA Based
Quadcopter,” vol. 5, no. 3, p. 5, Mar. 2018.

[8] C. Dominguez-Bonilla, A. Gutierrez, F. Jimenez, and H. R. Chamorro, “SysML
methodology for FPGA-based Controller design for quadcopters,” in 2016 IEEE 7th
Annual Information Technology, Electronics and Mobile Communication Conference
(IEMCON), 2016, pp. 1–6.

[9] J. C. Vianna Junior, J. C. De Paula, G. V. Leandro, and M. C. Bonfim, “Stability Control
of a Quad-rotor Using a PID Controller,” Braz. J. Instrum. Control, vol. 1, no. 1, p. 15,
Oct. 2013.

[10]Department of Electronic and Computer Engineering, The Hong Kong University of
Science and Technology, Hong Kong, China, H. L. Chan, and K. T. Woo, “Design and

22

https://www.zotero.org/google-docs/?3weZzN
https://www.zotero.org/google-docs/?3weZzN
https://www.zotero.org/google-docs/?3weZzN
https://www.zotero.org/google-docs/?3weZzN
https://www.zotero.org/google-docs/?3weZzN
https://www.zotero.org/google-docs/?3weZzN
https://www.zotero.org/google-docs/?3weZzN
https://www.zotero.org/google-docs/?3weZzN
https://www.zotero.org/google-docs/?3weZzN
https://www.zotero.org/google-docs/?3weZzN
https://www.zotero.org/google-docs/?3weZzN
https://www.zotero.org/google-docs/?3weZzN
https://www.zotero.org/google-docs/?3weZzN
https://www.zotero.org/google-docs/?3weZzN
https://www.zotero.org/google-docs/?3weZzN
https://www.zotero.org/google-docs/?3weZzN
https://www.zotero.org/google-docs/?3weZzN
https://www.zotero.org/google-docs/?3weZzN
https://www.zotero.org/google-docs/?3weZzN
https://www.zotero.org/google-docs/?3weZzN
https://www.zotero.org/google-docs/?3weZzN
https://www.zotero.org/google-docs/?3weZzN
https://www.zotero.org/google-docs/?3weZzN
https://www.zotero.org/google-docs/?3weZzN
https://www.zotero.org/google-docs/?3weZzN
https://www.zotero.org/google-docs/?3weZzN
https://www.zotero.org/google-docs/?3weZzN
https://www.zotero.org/google-docs/?3weZzN
https://www.zotero.org/google-docs/?3weZzN
https://www.zotero.org/google-docs/?3weZzN
https://www.zotero.org/google-docs/?3weZzN
https://www.zotero.org/google-docs/?3weZzN
https://www.zotero.org/google-docs/?3weZzN
https://www.zotero.org/google-docs/?3weZzN
https://www.zotero.org/google-docs/?3weZzN
https://www.zotero.org/google-docs/?3weZzN
https://www.zotero.org/google-docs/?3weZzN
https://www.zotero.org/google-docs/?3weZzN
https://www.zotero.org/google-docs/?3weZzN
https://www.zotero.org/google-docs/?3weZzN
https://www.zotero.org/google-docs/?3weZzN
https://www.zotero.org/google-docs/?3weZzN
https://www.zotero.org/google-docs/?3weZzN
https://www.zotero.org/google-docs/?3weZzN
https://www.zotero.org/google-docs/?3weZzN
https://www.zotero.org/google-docs/?3weZzN
https://www.zotero.org/google-docs/?3weZzN

Control of Small Quadcopter System with Motor Closed Loop Speed Control,” Int. J.
Mech. Eng. Robot. Res., 2015.

[11]Z. Qun, H. Zhining, W. Hongshuo, L. Hailin, and Q. Zhaowei, “ARM (advanced RISC
(reduced instruction set computer) machines) and FPGA (field-programmable gate
array) based navigation and flight control system for unmanned helicopter,”
CN102360218 (A), 22-Feb-2012.

[12]“DSHOT600 & 150 -> digital one shot motor (ESC) protocol by blckmn · Pull Request
#1282,” GitHub. [Online]. Available: https://github.com/betaflight/betaflight/pull/1282.
[Accessed: 31-May-2019].

23

https://www.zotero.org/google-docs/?3weZzN
https://www.zotero.org/google-docs/?3weZzN
https://www.zotero.org/google-docs/?3weZzN
https://www.zotero.org/google-docs/?3weZzN
https://www.zotero.org/google-docs/?3weZzN
https://www.zotero.org/google-docs/?3weZzN
https://www.zotero.org/google-docs/?3weZzN
https://www.zotero.org/google-docs/?3weZzN
https://www.zotero.org/google-docs/?3weZzN
https://www.zotero.org/google-docs/?3weZzN
https://www.zotero.org/google-docs/?3weZzN
https://www.zotero.org/google-docs/?3weZzN
https://www.zotero.org/google-docs/?3weZzN
https://www.zotero.org/google-docs/?3weZzN
https://www.zotero.org/google-docs/?3weZzN

